A New Class of Time Discretization Schemes for the Solution of Nonlinear PDEs

نویسندگان

  • Gregory Beylkin
  • James M. Keiser
  • Lev Vozovoi
چکیده

We consider issues of stability of time-discretization schemes with exact treatment of the linear part (ELP schemes) for solving nonlinear PDEs. A distinctive feature of ELP schemes is the exact evaluation of the contribution of the linear term, that is if the nonlinear term of the equation is zero, then the scheme reduces to the evaluation of the exponential function of the operator representing the linear term. Computing and applying the exponential or other functions of operators with variable coefficients in the usual manner requires evaluating dense matrices and is highly inefficient. It turns out that computing the exponential of strictly elliptic operators in the wavelet system of coordinates yields sparse matrices (for a finite but arbitrary accuracy). This observation makes our approach practical in a number of applications. In particular, we consider applications of ELP schemes to advection–diffusion equations. We study the stability of these schemes and show that both explicit and implicit ELP schemes have distinctly different stability properties if compared with known implicit–explicit schemes. For example, we describe explicit schemes with stability regions similar to those of typical implicit schemes used for solving advection–diffusion equations. c © 1998 Academic Press

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The new implicit finite difference method for the solution of time fractional advection-dispersion equation

In this paper, a numerical solution of time fractional advection-dispersion equations are presented.The new implicit nite dierence methods for solving these equations are studied. We examinepractical numerical methods to solve a class of initial-boundary value fractional partial dierentialequations with variable coecients on a nite domain. Stability, consistency, and (therefore) convergenceof t...

متن کامل

The new implicit finite difference scheme for two-sided space-time fractional partial differential equation

Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...

متن کامل

On the convergence of the homotopy analysis method to solve the system of partial differential equations

One of the efficient and powerful schemes to solve linear and nonlinear equations is homotopy analysis method (HAM). In this work, we obtain the approximate solution of a system of partial differential equations (PDEs) by means of HAM. For this purpose, we develop the concept of HAM for a system of PDEs as a matrix form. Then, we prove the convergence theorem and apply the proposed method to fi...

متن کامل

Using Chebyshev polynomial’s zeros as point grid for numerical solution of nonlinear PDEs by differential quadrature- based radial basis functions

Radial Basis Functions (RBFs) have been found to be widely successful for the interpolation of scattered data over the last several decades. The numerical solution of nonlinear Partial Differential Equations (PDEs) plays a prominent role in numerical weather forecasting, and many other areas of physics, engineering, and biology. In this paper, Differential Quadrature (DQ) method- based RBFs are...

متن کامل

A spline collocation method for integrating a class of chemical reactor equations

. In this paper, we develop a quadratic spline collocation method for integrating the nonlinear partial differential equations (PDEs) of a plug flow reactor model. The method is proposed in order to be used for the operation of control design and/or numerical simulations. We first present the Crank-Nicolson method to temporally discretize the state variable. Then, we develop and analyze the pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998